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INTRODUCTION 
Immortal time bias is a source of systematic uncertainty that can affect observational studies in which 
exposure can change during the follow-up [1]. It refers to the period during which the outcome cannot occur 
because of the exposure definition. For example, in pharmacoepidemiology studies, if a cohort of patients 
is followed from the hospital discharge and the exposure is a drug prescription, the time until the prescription 
is defined as immortal because exposed individuals have to survive until the treatment definition is fulfilled 
[2]. If this unexposed period is not correctly managed in the design or analysis, biased results will be 
obtained. 
Several approaches have been proposed to prevent immortal time bias [3], including the adoption of a time-
dependent analysis. Albeit the Poisson regression model is frequently applied in this context [4,5], its use 
requires the assumption that the baseline outcome risk is the same during the exposed and unexposed 
periods. However, suppose the exposure follows a specific trend (e.g., all patients are unexposed at the 
start of the study and can switch to exposure during follow-up), and the risk of the outcome increases (or 
decreases) over time. In that case, the baseline risks are non-exchangeable, and thus confounding affects 
the measure of the exposure-outcome relation. 
 
AIMS 
To assess the potential consequences of using the Poisson model to cope with immortal time bias on 
estimating the exposure-outcome relationship in settings of time-varying outcome risk. 
 
METHODS 
This study was entirely based on simulations. To simulate survival times in the setting of time-varying hazard, 
event times were assumed to follow a Weibull distribution. The Weibull distribution is characterized by two 
parameters: λ (scale) and υ (shape). Weibull parameters were chosen as follows to identify three different 
scenarios: 

- scenario A (the hazard of the event is constant over time): λ=0.1; υ=1; 
- scenario B (the hazard of the event decreases over time): λ=0.75; υ=0.33; 
- scenario C (the hazard of the event increases over time): λ=1e-05; υ=7. 

In our analyses, survival times were censored after five-time units. 
We consider only one type of time-varying exposure, i.e. a dichotomous time-varying exposure in which 
patients can change at most once from unexposed to exposed. To simulate the exposure status, exposure 
times were initially assumed to follow a Uniform distribution from 0 to 10. In further analyses, we modified 
how to generate the exposure status (see below). If the exposure time was less than the survival time, the 
patient was considered exposed from the former to the latter time. The exposure effect was assumed to be 
constant over time. The true risk ratio of outcome in relation to exposure was denoted by RRT. 
For each scenario, 1,000 samples of size 10,000 were drawn. A Poisson regression model was used to 
assess the exposure effect by estimating the risk ratio of the outcome in relation to exposure (denoted by 
RRP). For each scenario, the median of estimated risk ratios of the 1000 samples were calculated. 
To investigate the ability of the Poisson model to obtain unbiased results in different settings, three analyses 
were performed. 



First, to evaluate the validity of estimates according to the trend of the outcome hazard, simulations were 
carried out by varying the Weibull distribution parameters from scenario A to scenarios B and C as follows: 

- from A to B: λ=0.75; υ ϵ (0.1,1), 

- from A to C: λ=0.1; υ ϵ (1,10). 

In this analysis, the exposure effect was set to RRT=0.75. 
Second, to verify how the exposure effect affects the estimates of the Poisson model, the exposure effect 
(RRT) was made to vary from 0.5 to 2. 
Finally, to assess the impact of exposure time and prevalence on the results, we changed the way to 
generate exposure status. To explore the influence of exposure prevalence, we set it to 25%, 50%, and 
75%. With this aim, exposure status was simulated for each patient from a Binomial distribution with the 
abovementioned probabilities. In addition, to investigate the impact of exposure time, the mean time to 
exposure was made to vary from 0 to 5-time units. Exposure times were simulated from a Gamma 
distribution with scale parameter equal to 0.1 and shape parameter from 0 to 50. In this analysis, the 
exposure effect was set to RRT=0.70. 
In all analyses, we assumed no confounding between exposure and outcome. 
 
RESULTS 
Small changes in the shape parameter strongly affected the exposure-outcome association estimate, both 
towards scenarios B and C. For example, RRP drops to 0.47 when υ = 0.7 and 0.20 when υ = 0.3. 
Conversely, RRP increases to 1.25 when υ = 2 and 1.92 when υ = 7. 
The influence of the RRT on the RRP is reported in Figure. In scenario A, the exposure-outcome association 
estimate from the Poisson model is always equal to the true exposure effect. Conversely, the RRP is always 
lower and greater than the RRT in scenarios B and C, respectively, and the extent of the difference between 
the estimate and true effect is constant for each value of RRT on the logarithmic scale. 
The difference between RRT and RRP is greatest when the mean exposure time and the exposure 
prevalence are high. For example, in scenario B, RRP is 0.24 (exposure prevalence = 25%) and 0.16 (75%) 
when the mean of time to exposure is 1, whereas, in scenario C, RRP is 1.77 (exposure prevalence = 25%) 
and 3.20 (75%) when the mean of time to exposure is 3. 
 
CONCLUSION 
The Poisson model provides biased estimates when outcome risk varies over time. In settings with a 
dichotomous time-varying exposure, the exposure-outcome association is underestimated and 
overestimated when the outcome risk decreases or increases over time, respectively. Therefore, the Cox 
model should be preferred to cope with immortal time bias in these settings. 
 
 
  



Figure. Risk ratios estimated by Poisson model (RRP) by varying the true exposure effect (RRT) according to the three 
main scenarios. 
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