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Introduction 
The relationship between clinical pathological conditions in older adults as depression, sarcopenia and 
cognitive status has been investigated among different populations using different statistical models [1,2,3]. 
A multivariate regression model has been used by Lyu et al. to investigate specific factors that could predict 
depression, building a structural equation model [4]. One study tried to assess this causal relationship with 
the use of Path Analysis [5]. In literature, logistic regression is compared to SEM models in different works 
[6-8].  
Objectives 
The aim is to test which statistical models fits best the relationships among depression, cognitive impairment 
and sarcopenia in frail older adults, using the most common diagnostic tests [9-14]. 
Methods 
S.I.M.M.S. project has performed on a cohort of patients aged ≥ 65 years and at risk or affected by 
sarcopenia in the hospital of “Casa Sollievo della Sofferenza”, following specific exclusion criteria. All 
patients signed the informed consent. Sarcopenia was assessed following the 2nd EWGSOP guidelines [9], 
and the nutritional status with the Mini Nutritional Assessment – Short Form (MNA-SF) [10]. Cognitive 
impairment was measured by Mini Mental State Examination (MMSE) [11], considering a pathological score 
< 24, by Clock Drawing Test (CDT) [12] and by Frontal Assessment Battery (FAB) [13]. State of depression 
was obtained with Hamilton Rating Scale for Depression (HAM-D) [14]. For assessing frailty, we used the 
Edmonton Frailty Scale. To identify the risk of prevalence of depression, cognitive impairment and 
sarcopenia in frail people we used the univariate and multivariate logistic regression. To predict a causal 
relationship among these pathological conditions we used two different SEM algorithm [15-19]. To assess 
the best model, we compare AIC score between [6-8]. Results with p-value < 0.05 were considered 
statistically significant. The statistical analyses were developed with version 4.2.2 of software R [20], and 
the R packages “lavaan” [21] was used to execute the two structural equation modelling (SEM). 
Results 
We recruited 115 older people aged in mean 75.8 ± 7.1 years old. The participants with cognitive impairment 
were 75 (65.8%) (33.3% males and 32.5% females). Older people with a Late Life Depression (LLD) were 
53 (46.1%) (20.0% males and 26.1% females). The participants at risk of malnutrition or with malnutrition 
were 37.4%, and older adults with probability of sarcopenia were 49.6%, instead of 17.4% with confirmed 
diagnosis. Using the univariate logistic regression, we obtained that people with elevated Frailty score 
showed an OD: 5.01, CI 95%: [2.16 – 12.34], p < 0.001 for presence of Late Life Depression (LLD), an OD: 
4.09, CI 95%: [1.72– 9.97], p = 0.002 for presence of Cognitive Impairment (CI), an OD: 4.44, CI 95%: [1.64 



– 12.60], p = 0.004 for presence of confirmed Sarcopenia and an OD: 25.38, CI 95%: [9.36 – 78.59], p < 
0.0001 for risk or malnutrition. Respectively the AIC score are: AICLLD =132; AICCI=136; AICSARC =138; 
AICMALNU=98. In the multivariate logistic regression model, using the presence or absence of frailty as 
dependent variable we obtained an AICMULT=124. In the multivariate model the relationship among frailty 
and depression, cognitive impairment and nutritional state remains statistically significant (respectively: p = 
0.007; p = 0.002; p = 0.001); not with sarcopenia. The first SEM model is Path Analysis 4A [17] showed in 
(fig.1A). We used three observed endogenous variables omitting sarcopenia, because it did not fit the model. 
The best fitted model obtained have: χ2/df = 1.138 (p = 0.286); Comparative Fit Index (CFI) = 0.99; Tucker-
Lewis Index (TLI) = 0.993; RMSEA = 0.035; SMRS= 0.044; AICPM= 1803.88 [22-24]. In addition, we present 
another structural regression model using more than two endogenous variables and comparing latent to 
latent variables, using the model 6b [17] showed in (fig.1B), obtaining: χ2/df = 0.815 (p = 0.635); Comparative 
Fit Index (CFI) = 1.00; Tucker-Lewis Index (TLI) = 1.013; RMSEA < 0.0001; SMRS = 0.031; AICSRM= 3053.84 
[22-24]. 
 
Figure 1 A. Descriptive diagram of the relationships in path analysis’ regression model showing the estimates β for 
each variable with significative p-values B. Descriptive diagram of the structure of the second SEM’s model: exogenous 
latent variables in circles and the endogenous ones in squares; the estimates β for each variable with significative p-
values [17] (MMSE, Mini Mental State Examination; FAB, Frontal Assessment Battery; CDT, Clock Drawing Test; MNA, 
Mini Nutritional Assessment; HAM-D, Hamilton Rating Scale for Depression; EDMONTON, Frailty Assessment Scale; 
CI, Cognitive Impairment). 

 
 



Conclusion 
The statistical relationship among dementia, depression and sarcopenia has been for years difficult to 
assess [25]. Until now there is not only one criterion used in literature for diagnosis of sarcopenia, among 
population in the wide world [6, 25,26], and in case of diagnosis of depression different tests had been used 
[2,4,5]. In multivariate logistic model frailty have a significant relationship with depression, cognitive 
impairment and nutritional status but not with sarcopenia. SEM models showed can’t describe a real causal 
relationship [17-19, 27], otherwise it seems to maintain the same relationships showed in literature (fig.1A/B) 
[1-3, 5]. The SEM model estimation with latent variables shows that factors as depression and cognitive 
impairment have respectively a positive and negative impact on multidimensional frailty. Depression has a 
negative impact on cognitive impairment (fig.1B). Therefore, considering AIC score, the best fitted model 
was described from the multivariate logistic regression. The model should be tested on a larger sample size 
and in a multicentric study [5]. 
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