EXPLORING THE SHORT-TERM EFFECTS OF PM₁₀ EXPOSURE ON NATURAL MORTALITY: A GPS-BASED MATCHING APPROACH IN THREE EUROPEAN CITIES

Marzi Chiara¹, Biscardi Giulio¹, Baccini Michela¹

¹Dipartimento di Statistica, Informatica e Applicazioni "Giuseppe Parenti", Università di Firenze, Firenze

Introduction

Since the year 2000, several epidemiological studies have examined the short-term impact of air pollution on health, understanding the causal relationship between exposure and response. The potential outcome (PO) approach to causal inference promotes a conceptual framework based on causes and consequences within a formal mathematical framework [1,2]. Although it has gained popularity in various fields, it is relatively novel in studies focusing on evaluating the effects and impacts of air pollution on health. Within a PO approach to causal inference, the propensity score (PS) has been introduced for confounding adjustment in observational studies with binary exposure [3]. A few years later, Hirano and Imbens made further advancements by extending the generalized PS (GPS) to the context of continuous exposure [4]. Subsequently, several studies in the literature have employed methods based on GPS for covariates adjustment, requiring the parametric or semi-parametric specification of a model for treatment and a model for the outcome [5,6]. Recently, Wu and colleagues proposed a GPS matching approach that, under a local ignorability assumption, jointly matches on both the estimated scalar GPS and exposure levels to adjust for confounding bias [7]. They estimated the exposure-response function that characterizes the long-term impact of the exposure to particulate matter with a diameter less than or equal to 2.5 µm (PM_{2.5}) on natural mortality in a large observational cohort in the United Stated (2000-2016).

Aims

In this study, we use the GPS-based matching method [7], to estimate the average causal dose-response function (aDRF) describing the short-term effect of the exposure to PM with a diameter less than or equal to $10 \ \mu m (PM_{10})$ on natural mortality, across three European cities.

Methods

Data

This study examined the impact of short-term exposure to PM₁₀ on natural mortality in three European cities: Milan (Italy), Skopje (North Macedonia), and Donostia - San Sebastián (Spain). For Milan, we obtained daily time series data of PM₁₀ levels, temperature, and humidity from the Regional Environmental Protection Agency and daily mortality data from the Regional Mortality Register, for the years 2003-2006. For Skopje, our data covers the ten districts within the municipality of Skopje, excluding Sopište, which is physically segregated from the Skopje agglomeration. For the period 2007-2011, daily PM₁₀ concentrations were obtained from the Ministry of the Environment and daily mortality data for all causes were collected from the Institute of Public Health. Regarding Donostia-San Sebastián, we obtained the mortality data from administrative registers (Biodonostia Institute) for the period 2010-2015. Environmetal time series have been collected from the monitoring stations for air quality control located in the city area.

Methods

Let i = 1, ..., N be the indicator of the day, also referred to as the unit. Let $Z_i \in \mathcal{Z}$ be the exposure level in day i, defined as the average level of PM₁₀ in the current day i and in the previous one i - 1 (lag 0-1 exposure), and let $Y_i \in \mathcal{Y}$ be the number of natural deaths in day i. Finally, let $X_i \in \mathcal{X}$ be a vector of Kcovariates for day i, which includes meteorological variables, terms, holidays, and influenza epidemics indicators. Under the Stable Unit Treatment Value Assumption (SUTVA) [2,6], we denote by $Y_i(z)$ the potential number of deaths in day *i* if *z* were the exposure level in that day. For each day, a collection of POs is defined, one for each possible level of exposure *z*, but we only observe the one corresponding to the actual exposure of that day, Z_i , being $Y_i(Z_i) = Y_i$.

To extrapolate information on the unobserved POs across days with similar covariates, we first defined a parametric log-normal model for the exposure Z_i , including different regressors for each city, and we estimated the GPS, according to [4], for each day *i*. The GPS was evaluated at the level of the observed exposure Z_i and for various hypothetical values *z* that the pollutant could potentially take. In this study, we define a predetermined set of exposure levels *z*, which represent the median points of *L* quantile-based bins. Under an assumption of weak local unconfoundedness, meaning that within a range of exposure levels the assignment of the exposure value is random given the covariates, we imputed the missing POs, for each exposure level *z* and for each unit *i'*, finding a matched observed unit *i* such that: (a) unit *i* had observed exposure Z_i that belonged to the bin of *z*; and (b) unit *i* was the nearest neighbor of the unit *i'* with respect to a two-dimensional Manhattan L1 distance on the exposure level and the estimated GPS, on a standardized scale. Then, on the entire matched set of POs, we constructed the smoothed aDRF, using a flexible regression spline. The 90% confidence intervals of the aDRF were estimated with a bootstrap method [4] repeated 100 times.

Results

In Fig. 1 we report the estimated aDRF for natural mortality, which describes how the average number of deaths in the city changes according to the PM_{10} level at lag 0-1. For all cities the causal relationship between natural mortality and air pollutant level exhibited a certain non-linearity and, although in different ranges of PM_{10} , an increasing pattern. This is in line with previous literature.

Figure 1. Average dose-response function (90% pointwise confidence band) of the causal relationship between PM₁₀ exposure at lag 0-1 and average daily mortality from natural causes in Milan (A), Skopje (B), and Donostia – San Sebastián (C).

Conclusions

This multi-city analysis broadens our perspective on the impact of PM_{10} on mortality, by adopting a GPSbased matching method to obtain the average dose-response function describing the short-term effect of airborne particles on mortality. This approach can be easily extended to other environmental epidemiology contexts.

Bibliography

1. Holland P.W. Statistics and causal inference. Journal of the American statistical Association. 1986;81(396):945-960.

- 2. Imbens G.W., Rubin D.B., Causal Inference in Statistics, Social, and Biomedical Sciences. Cambridge University Press; 2015.
- 3. Rosenbaum P.R., Rubin D.B., The central role of the propensity score in observational studies for causal effects. Biometrika. 1983;70(1):41-55.
- 4. Hirano, K. Imbens, G.W., The Propensity Score with Continuous Treatments. In Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives (eds Shewhart W.A., Wilks S.S., Gelman A. and Meng X.-L.). 2004; chapter 7:73-83.
- 5. Bia M., Flores C.A., Flores-Lagunes A., et al., A Stata package for the application of semiparametric estimators of dose–response functions. The Stata Journal. 2014;14(3):580-604.
- 6. Forastiere L., Carugno M., Baccini M., Assessing short-term impact of PM10 on mortality using a semiparametric generalized propensity score approach. Environ Health. 2020;19(1):46.
- 7. Wu X., Mealli F., Kioumourtzoglou M.A., et al., Matching on Generalized Propensity Scores with Continuous Exposures. Journal of the American Statistical Association. Published online December 12, 2022:1-29.